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Supplementary Material

1. Overview

Section 2 provides a detailed description of our clean set
construction strategy. Section 3 explains the SSL-Training
process, offering a comprehensive overview of the training
methodology.Section 4 explains the bilevel optimization al-
gorithm involved in the meta-learning process, offering a
detailed overview of the methodology. Section 5 presents
additional experimental results, including experiments con-
ducted under severe label noise conditions. Section 6 show-
cases more visualizations to further demonstrate the effec-
tiveness of our approach. Finally, Section 7 provides a dis-
cussion and explanation of MEDAL in this paper.

2. Clean Set Construction

To identify D, we adopt a novel sample selection strategy
leveraging the Jensen-Shannon divergence (JSD) as a dis-
agreement measure between the predicted probabilities and
the ground-truth labels:

where y; is the true (or pseudo) label for the i-th sample.
The JSD is defined as:

1 1
d; = §KLD(yi||mi) + iKLD(piHmi), (2)

where m; = % and KLD being the Kullback-Leibler
divergence. To stabilize predictions, we employ an Expo-
nential Moving Average (EMA) [5] to refine p;, yielding
smoother and more robust divergence values.

To ensure class balance in D, we implement a uniform
selection [3] mechanism. First, the cutoff divergence value
deutofr 18 determined using:
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where d,y, and dy;, are the average and minimum diver-
gence values, 7 is a filter coefficient, and d,, is an adjust-
ment threshold. This approach dynamically adjusts deyofr
based on network predictions, avoiding excessive noisy
sample selection early in training.
Next, we divide samples into class-specific subsets and
apply uniform filtering:
a
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where R is the filter rate determined by the percentage of
samples below dyfr, and d@ represents the divergence
values for class j. The final clean subset is obtained by
combining selected samples across all classes:

C
Da. = | DY, (5)
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where C is the total number of classes.

In high noise rate scenarios, small-loss selection often
yields too few clean samples, limiting training effective-
ness. To address this, we apply a label correction strategy
by identifying high-confidence samples and correcting their
labels, even when they differ from the noisy labels.

Let p; be the maximum predicted probability for sample
1, and §J; = argmaxy, p; , be its predicted label, where p; j
is the predicted probability of class k for sample i. We fit a
Gaussian Mixture Model (GMM) [7] with two components
to the distribution of p; and define a threshold 7" based on
the mean 4, and variance o7 of the high-confidence com-
ponent:

T = pp + Bop. (6)
We select samples satisfying p; > T to form a high-
confidence set. For these samples, if the predicted label ¥;
differs from the noisy label y;, we correct the label:
) @i, ifp;>Tandg; #y;
Yi = . (7
y;. otherwise

By combining these corrected samples with the initial
clean samples from small-loss selection, we enhance the
training dataset’s quality and improve the robustness of the
learned model. Based on our empirical observations, we set
B = 0 to achieve optimal performance.

3. SSL-Training Details
3.1. Training Pipeline

In this semi-supervised learning (SSL) framework, we be-
gin by splitting the training data into two subsets, Dqjean and
Diisy, through a uniform selection process. Here, Dcean
refers to the labeled set, while D, represents the unla-
beled set. At the outset of the SSL procedure, we generate
several augmented data sets to facilitate both label refine-
ment and model parameter updates. Specifically, we create
weakly-augmented (WA) data for both the labeled and un-
labeled data:



Dlgheled — fgweak gwedk |5 — 1 N}, (®)
Punlabeled _ {ayss, ays™ [i=1,...,N}. 9

Additionally, we generate strongly-augmented (SA) data
for both labeled and unlabeled samples:
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Weak augmentations, X ;"?;‘Lk, are primarily used for label-

refinement and pseudo-label generation. For each weakly-
augmented labeled sample x;”";,";k, we calculate the pre-
dicted probability using the current model’s output. De-
note the output probabilities of the network for the weakly-

augmented samples as follows:

Zh( (xrss0®)500), a2)

where h (f ( weak, .9k ) qb(k)) denotes the softmax output
of network k (k = 1,2) for the weakly-augmented input

%% This output is then used to refine the label y; through
a welghted combination of the original label and the net-
work’s predicted label:

— w;) P, 13)

Here, w; is the label refinement coefficient, which is com-
puted based on the Jensen-Shannon Divergence (JSD) be-
tween the softmax predictions of the two networks:

1—d;, ifd; >d,
w; = { ! (14)
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1, otherwise

where d; is the JSD value for the weakly-augmented sample
X;, and d,, is a threshold used to control the weight assigned
to the original label versus the predicted label. After obtain-
ing the refined labels, we apply temperature sharpening to
adjust the confidence of the predicted labels, as described in
[6], to generate ¥;.

Similarly, for unlabeled data, we generate pseudo-labels
by averaging the predictions of both networks on the
weakly-augmented unlabeled data:
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The resulting pseudo-labels q are then refined by apply-
ing temperature sharpening.

15)

We now aggregate the labeled and unlabeled data to-
gether, with their respective refined labels and pseudo-
labels. The sets of labeled and unlabeled data are as fol-
lows:

X={EF"Ey:) i=1,...,Nm=1,2}. (16)
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To improve model generalization, we apply the Mix-
Match strategy [1] for data augmentation. First, we shuffle
the concatenated labeled and unlabeled sets:

LSNm=1,2}. (17

W = Shuffle (Concat (Xu)) . (18)

Then, we perform MixUp on both labeled and unlabeled
sets:

X = (MixUp (XW) i€ (17...,\)€|)) . (19)

U= (Mlep (““W+|X|> ie, ..,|U|)) (20)

Here, MixUp [8] generates convex combinations of two
samples (labeled and unlabeled) along with their corre-
sponding labels (ground-truth or pseudo). This strategy en-
courages the model to learn more robust decision bound-
aries by interpolating between samples in both the feature
and label spaces.

3.2. Loss Functions

After completing the weight calculation, we first select a
clean subset with normal sample selection and label cor-
rection techniques [3]. Then we employ a weighted cross-
entropy to focus more on the hard-clean examples. The loss
function for hard-labeled samples is defined as:
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where H(y,§) is the cross-entropy loss between the true
label y and the predicted probability distribution 7.

To integrate both clean and noisy samples in a semi-
supervised learning (SSL) framework [1], we combine the
supervised loss with additional loss terms to handle label
noise and improve robustness. The overall training objec-
tive is then defined as:

Lyvepar = Lyr + ALy + MLy + AcLe, (22)



where C is the contrastive loss, £, and £, handle unlabeled
data and regularization, respectively. Ac, A, A, are the cor-
responding hyper-parameters.

Additionally, we introduce a regularization term based
on a prior uniform distribution (7. = 1/C), as follows:
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This regularization term helps in controlling the distribu-
tion of network outputs across all samples in the mini-batch.
In addition to these components, we include a contrastive
loss that applies only to noisy samples. Let the projection
head outputs for the strong augmentations umoné and ﬁ;“;“é
be z; and z;, respectively. The contrastive loss function [4]

is defined as:

exp (sim(z;,z;)/k)

l;; = —log : , (24)
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where 15-; is an indicator function that takes a value of 1 if
b # i, K is the temperature constant, and B is the mini-batch
size. The similarity sim(z;,z;) is the cosine similarity be-
tween the projections z; and z;.

For each mini-batch, we have 2B augmented samples,
and the pairs (7, j) form positive pairs. The remaining 2B —
2 samples are considered as negative examples. The final
contrastive loss L¢ is computed as:

2B
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This formulation does not require any ground-truth la-
bels or pseudo-labels. Since contrastive loss does not rely
on labels, it helps mitigate the impact of noisy label memo-
rization.

Finally, we accumulate all losses to get the total loss:

Liotat = Lmepar + AeLe, (26)

where \¢ is the contrastive loss coefficient, and L¢ is the
contrastive loss defined in Eq. (25).

4. Bi-level Optimization Details

The proposed method follows a bi-level optimization frame-
work that jointly learns model parameters § and meta-
parameters «, . This hierarchical structure contains two
coupled optimization objectives:

Algorithm 1: Bi-level Optimization Framework

Require: Noisy training set Dy.in, clean validation set
Dcle
1: Initialize model parameters §, meta-parameters «, 3
2: for epoch=1to K do
3:  Inner Loop: Update 6 via SGD
fort=1toT do
0+ 60— U@V@ﬁtrain
end for
Outer Loop: Compute meta-gradients
Compute 6* from inner optimization
Calculate VL, and VgL, via Eq. 32
10 Update o + a — 14,V Lya
11: Update B+ - ’r]gV[gﬁval
12: end for
13: Optimized 0%, o*, 5*

B A A

4.1. Inner and Outer Objectives

The bi-level optimization is formulated as:

* Inner Optimization (Model Parameter Update): Fixed
meta-parameters « and 3, update model parameters 6:

0 (Ot, B) = arg mein ‘Clrain(07 «, B)

N
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* Outer Optimization (Meta-Parameter Update): Update
« and (3 using the optimized #* on a clean validation set:

o, BF = arg n{ljin Ly (07 (o, B))

L ZH val 9* val) (28)

where H(-,-) denotes cross-entropy, ¢; and §; represent
noisy label and pseudo-label respectively, and Dgj. contains
clean validation samples.

4.2. Gradient Update Rules

The optimization alternates between two gradient update
phases:

 Inner-Level Update: Standard gradient descent on 6
with learning rate 7y:

0+ 60— n@v9£train (29)

* Outer-Level Update: Meta-gradient updates for « and
using implicit differentiation:

Q<= a— navaﬁval (30)

BB —=nsVsLa @31



The meta-gradients are computed via chain rule:

OLw 00"
90" 90/0p

Direct gradient Implicit gradient

voz,ﬁ‘cval = (32)

4.3. Algorithm Summary

Algorithm | outlines the complete procedure. The structure
enables simultaneous noise-robust learning (inner loop) and
automatic meta-parameter adaptation (outer loop).

5. More Experiment Results

5.1. Severe Noise Conditions

We present the classification performance of our proposed
method, MEDAL, on the CIFAR10 dataset under severe
label noise conditions. We compare MEDAL with the ex-
isting Union [3] at noise rates of 90%, 92%, 95%, and 98%,
as summarized in Table 1.

Noise Rate (%) ‘ 0%  92%  95%  98%

Union [3] 90.81 87.61 80.82 50.63
MEDAL (Ours) | 93.92 90.73 87.82 59.42

Table 1. Classification performance (%) of the proposed method
on CIFAR10 under severe label noise.

As shown in the Table 1, all methods experience a de-
cline in classification accuracy as the noise rate increases.
However, MEDAL consistently outperforms the Union
method across all noise levels. Specifically, at a 90% noise
rate, MEDAL achieves an accuracy of 93.92%, which is ap-
proximately 3.11% higher than Union’s 90.81%. When the
noise rate increases to 92% and 95%, MEDAL attains ac-
curacies of 90.73% and 87.82%, respectively, significantly
surpassing Union’s 87.61% and 80.82%. Even under the
extreme noise rate of 98%, MEDAL maintains an accuracy
of 59.63%, exceeding Union’s 50.63% by nearly 8.79%.

These results highlight the robustness of MEDAL in
handling high label noise, whereas the Union method per-
forms significantly worse as the noise rate exceeds 95%.
Our approach better filters noisy data, maintaining higher
classification performance under extreme conditions.

6. More Visualization Results

6.1. T-SNE Analysis of DCD-selected Samples

The t-SNE analysis (Fig. 1a) illustrates the feature distribu-
tions of three CIFAR10 classes with center ¢, where darker
points represent samples with higher importance weights.
Compared to traditional small-loss criteria, DCD’s sample
selection results demonstrate its ability to retain boundary-
hard samples, which are crucial for improving model ro-
bustness and performance in noisy environments.
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(a) T-SNE Analysis for selected set.

Meanwhile, we also investigated the evolution of
learnable parameters in meta-learning as training epochs
progress, shown in Fig. 1b. The stability of learned pa-
rameters «;, (3;, and I'; reflects the model’s ability to adapt
and refine its sample selection process over time, further
enhancing its robustness and performance.

6.2. Heatmap for All Epochs

We present heatmap visualization for all training epochs in
Figure 2, highlighting the model’s attention to various input
regions. The extended epoch range in Figure 2 allows us to
conclude that the relationship between DCD and Loss, as
discussed in the main text, remains independent throughout
the training process.
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Figure 2. Heatmaps for all epochs. The heatmaps illustrate the
areas the model focuses on during training.

6.3. Segmentation Results

Finally, we present additional segmentation results from the
final model, highlighting its robustness against noisy la-
bels and complex boundaries. As shown in Figure 3, the
segmentation masks closely align with the ground truth,
demonstrating the model’s ability to effectively handle
noisy annotations.
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Figure 3. Segmentation results from the final model. These results show the model’s accuracy in segmenting various structures in the
images. The segmentation masks closely match the ground truth, indicating the model’s robustness.



7. Further Discussion

7.1. Distinguishing DCD from Loss-based Methods

Symmetric noise | 92% 95% 98%
DCD w/o EMA 88.91 86.15 56.78
DCD w/o LC 88.14 83.71 53.07
DCD (Focal Loss) | 89.31+0.32 8593 £0.41 5586+ 0.49
DCD | 90.73 £0.29 87.82+0.34 5942+ 042

Table 2. Ablation Study of DCD on CIFAR-10 (£ std. over 3 runs).

While the reweighting mechanism of DCD is inspired by
L2B, their underlying motivations and solutions are funda-
mentally different. L2B reweights pseudo-labels and real
labels to reduce the impact of erroneous pseudo-labels.
In contrast, DCD adjusts the weights of easy and hard
samples using dynamic center distance to effectively di-
rect the model’s focus towards more challenging examples.
Unlike loss-based reweighting methods that assign high
weights to large-loss samples, our approach introduces a
non-loss-based reweighting mechanism driven by dynamic
center distances, which can reduce the correlations between
weights and losses and help prevent the amplification of
high losses for mislabeled examples.

To demonstrate DCD’s superiority over traditional loss-
based methods, we compare against Focal Loss by replac-
ing the DCD weight with T'; = (1 — p;[y;])” and tuning ~
according to validation performance. As shown in Table 2,
DCD consistently outperforms Focal Loss across all noise
levels, validating our distance-based approach.

7.2. Dynamic Class Centers and Sample Reliability

Class centers are calculated based on the obtained clean ex-
amples, whose labels include both annotated and pseudo-
labels, derived separately through sample selection and la-
bel correction. In our approach, o weights the annotated
labels, while 8 weights the pseudo-labels. Thus, we use
the sum of « and S to reflect the overall reliability of each
sample. This differs from conventional approaches that con-
strain  + 8 = 1, allowing for more flexible sample impor-
tance modeling.

The mechanism behind class centers naturally aligning
closer to their true counterparts when removing the sum-
to-one constraint stems from the adaptive nature of meta-
learned parameters a; and (3;. This flexibility enables dy-
namic calibration of label reliability weights, particularly
crucial when handling varying noise levels and sample con-
fidence. The learning process consequently shifts class pro-
totypes toward authentic class distributions through dual
mechanisms: amplifying reliable supervisory signals (true
labels) while suppressing noisy samples’ contributions.

121 —— Labeled Loss
—— Unlabeled Loss

0] —— Contrastive Loss
—— Total Loss

—— Online Approximation
Our Proposed Method
Improvement Zone

‘Warmup Phase
End of Warmup (Epoch 9)

Final: 0.4072]

AN A A B Moot

Final: 0.1969]

o 5 10 10 200 250 300 ) 50 100 150 200 250 300
Epoch Epoch

(a) Training Loss Components and Con- (b) Online Approximation vs. DCD for
vergence Dynamics of DCD Validation Convergence

Figure 4. DCD Loss Dynamics and Performance Comparison.

7.3. Meta-Learning Convergence and Training Dy-
namics

Both o and [ are updated after each optimization step.
Unlike online approximation (OA), we terminate meta-
optimization when the validation loss difference falls be-
low a threshold. Compared with OA, our method can esti-
mate better « and J values at the cost of approximately 1.5x
training time.

To demonstrate the convergence properties, Figure 4a re-
ports the training loss for each component, showing sta-
ble convergence of all loss terms. Figure 4b compares
the validation losses between online approximation and our
proposed DCD, demonstrating that our approach achieves
lower validation loss through more accurate parameter esti-
mation.

7.4. Training Process and Implementation Details

In each batch, meta-learning does not update the main
model’s parameters. Instead, it uses a small set of clean
samples to compute weights for the filtered clean samples.
These weights are then used by the SSL component, which
updates the main model’s parameters. Moreover, meta-
learning is not involved in the warm-up phase. The pro-
posed meta-learning approach does not introduce any addi-
tional hyperparameters. The hyperparameters used for self-
supervised learning follow the settings from UNICON and
remain consistent across all datasets.

7.5. Clean Validation Set Construction

For all datasets, we randomly split 2% of training examples
as the clean validation set. A small clean set may be feasi-
ble for certain scenarios. Moreover, existing methods such
as [2] can automatically identify clean examples, making
DCD potentially applicable for label-scarce domains. This
addresses the practical deployment considerations while
maintaining the method’s effectiveness.

7.6. Ablation Study on Key Components

We conduct comprehensive ablation studies on the two key
components: (1) EMA smoothing, whose removal causes
an average 2.04% performance drop across CIFAR-10 noise



levels; (2) Label Correction (LC), which is applied across
all noise levels and is particularly effective under heavy
noise, with its removal causing a substantial 6.35% accu-
racy decrease under extreme noise (98%). Results presented
in Table 2 demonstrate the importance of each component.

7.7. Computational Overhead

Compared to L2B, our method increases per-epoch training
time by 1.5x and raises GPU memory consumption from
5.3GB to 6.9GB. This modest increase in computational re-
quirements is justified by the consistent performance im-
provements across all datasets and noise levels.

7.8. Handling Clean Samples and Noise

Examples with large losses are often seen as hard examples
but are also likely to be noisy. The proposed DCD method
identifies hard examples based on feature distances from
meta-learned class centers, offering complementary infor-
mation to loss values. This approach provides a more robust
distinction between genuinely hard clean samples and mis-
labeled noisy samples, as the distance-based metric is less
susceptible to the misleading signals that affect loss-based
methods.
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