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Abstract

The sample selection approach is a widely adopted strat-
egy for learning with noisy labels, where examples with
lower losses are effectively treated as clean during training.
However, this clean set often becomes dominated by easy
examples, limiting the model’s meaningful exposure to more
challenging cases and reducing its expressive power. To
overcome this limitation, we introduce a novel metric called
Dynamic Center Distance (DCD), which can quantify sam-
ple difficulty and provide information that critically com-
plements loss values. Unlike approaches that rely on pre-
dictions, DCD is computed in feature space as the distance
between sample features and a dynamically updated center,
established through a proposed meta-learning framework.
Building on preliminary semi-supervised training that cap-
tures fundamental data patterns, we incorporate DCD to
further refine the classification loss, down-weighting well-
classified examples and strategically focusing training on
a sparse set of hard instances. This strategy prevents easy
examples from dominating the classifier, leading to more ro-
bust learning. Extensive experiments across multiple bench-
mark datasets, including synthetic and real-world noise set-
tings, as well as natural and medical images, consistently
demonstrate the effectiveness of our method.

1. Introduction
In supervised learning, labeled data is a crucial resource for
training effective models. However, acquiring high-quality
labeled data is often challenging, leading to the introduc-
tion of noisy labels in many datasets [35, 44, 54]. This la-
bel noise poses significant challenges, especially as deep
learning models are highly expressive and prone to overfit-
ting—even when exposed to noisy labels [5, 7, 40, 43]. This
tendency to overfit noise can severely degrade model per-
formance, making the mitigation of label noise a key area
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Figure 1. (a) Existing methods tend to prioritize simple, low-loss
samples, potentially overlooking harder, more informative sam-
ples that could enhance model performance. (b) Our approach
emphasizes the importance of selecting both easy and hard sam-
ples, resulting in a more robust model that learns from a broader
range of data, mitigating overfitting and improving generalization.

of active research [2, 3, 29, 48, 52, 55, 56, 58].
Existing methods for handling label noise generally fall

into two main categories: statistically consistent and sta-
tistically inconsistent approaches [30, 34, 57]. Statistically
consistent methods model the label noise by estimating a
noise transition matrix [12, 37]. While these methods are
theoretically robust, their practical effectiveness diminishes
under high noise levels or when dealing with datasets with
large class counts, as accurately estimating the noise ma-
trix becomes difficult in such conditions [16]. In contrast,
statistically inconsistent approaches adopt various heuristic
like memorization effect [14], co-teaching [59], label cor-
rection [63], and small-loss [13] sample selection to combat
noisy labels. Most of these methods are implemented by
constructing a subset of samples, often deemed less noisy.
However, these methods tend to misidentify hard-to-learn
samples as noisy, based on shared features such as high loss
or low prediction confidence. As a result, they favor sim-
pler, easier-to-learn samples, which can limit model learn-
ing by excluding informative ones.



Current methods for distinguishing between easy and
hard samples also face limitations in high-noise scenarios
[29, 49, 54]. For example, sample separation methods, such
as those based on small-loss strategy [11, 17, 19], often fail
to differentiate between genuinely noisy samples and those
that are simply hard to learn. This misclassification leads
to the exclusion of critical samples, adversely impacting
model learning and generalization. Consequently, there is
a growing need for advanced methods that can more accu-
rately differentiate between noisy and informative samples,
ensuring a more balanced learning process and the preser-
vation of valuable information.

To address the aforementioned challenges, we propose
DCD, an innovative method that incorporates with a meta-
learning framework to dynamically differentiate easy and
hard samples. DCD is computed as the Euclidean dis-
tance between each sample’s feature representation and an
evolving class center, which continuously adapts through-
out training to capture each class’s shifting feature distri-
bution. By constructing category-specific center vectors
from all samples, DCD achieves a detailed representation
of each class, assigning weights based on sample distance
from the center to prioritize harder, more distant exam-
ples. Additionally, to better estimate the true class centers,
we introduce a weighted sample averaging technique with
weights derived from a novel meta-learning approach. This
weighted averaging substantially enhances the precision of
class center estimates, allowing DCD to more accurately
and reliably identify challenging and complex samples. In
summary, these mechanisms enable the model to further
focus on hard samples on the basis of the original semi-
supervised training focusing on simple samples, thus im-
proving the model’s generalization in noisy label settings.

We evaluate DCD across six synthetic and real-
world noisy benchmarks, including natural image clas-
sification datasets—CIFAR-10 [21], CIFAR-100 [21],
Tiny-ImageNet [22], Clothing1M [54], and WebVi-
sion [26]—and a medical image segmentation dataset,
PROMISE12 [28]. For synthetic noise, DCD achieves
65.3% classification accuracy on CIFAR-100 with 90%
symmetric noise and 68.4% on Tiny-ImageNet with 50%
symmetric noise, outperforming L2B [64] by 4.6% and
4.1%. In real-world noise settings, DCD achieves 78.34%
on Clothing1M, surpassing the best baselines by 0.84%,
respectively. Additionally, DCD improves performance in
medical image segmentation, achieving a 1.98% gain on the
PROMISE12 dataset.

The main contributions can be summarized as follows:

• We introduce DCD, a novel metric that measures sample
difficulty by computing the Euclidean distance between
sample features and a dynamically updated class center.
This allows the model to focus on more challenging sam-
ples, improving robustness in noisy label settings.

• We propose a meta-learning framework that integrates
DCD to dynamically adjust sample loss weights, allowing
the model to prioritize hard examples and refine the fea-
ture centers during training. This enhances the model’s
ability to handle noisy labels more effectively.

• Achieves SOTA results on both synthetic/real-world
noisy labels across natural and medical image datasets.

2. Related Work
Learning with Noisy Labels. Learning with noisy labels
is widely studied, with methods divided into model-based
and model-free approaches. Model-based methods esti-
mate a noise transition matrix to recover an optimal clas-
sifier, but they struggle with heavy noise or many classes
[13, 16, 47]. Model-free methods, such as noisy sample
detection [38, 61] and pseudo-label refinement [24], aim
to reduce noise impact. Despite progress, both face chal-
lenges in high-noise or data-scarce scenarios. Recent efforts
in unsupervised contrastive learning [19, 25, 62] focus on
learning robust features without label correction. Robust,
scalable representation learning remains challenging due to
noisy labels’ complex ties to model generalization.
Hard Example Mining. Hard example mining is com-
monly used in machine learning to identify difficult sam-
ples for improved model training. Two primary approaches
are employed: one for SVMs, where the working set of ex-
amples is dynamically updated to focus on hard examples
violating the model’s margin [10], and another for non-
SVMs, where false positives are added to the training set
after model convergence [6]. However, when applied to
noisy label problems, these methods face challenges. Exist-
ing techniques, such as noise transition matrices or pseudo-
labeling, often assume known noise transitions, which is un-
realistic in practice [12, 37, 53]. To address this challenage,
we introduce DCD, a metric that focuses training on harder
examples by measuring distance to a dynamic class center,
enhancing model performance in noisy label settings.
Meta Learning. Meta-learning has proven effective in en-
hancing model generalization. By leveraging a small clean
set or auxiliary tasks, it optimizes model parameters and
hyper-parameters efficiently, often through techniques like
bi-level optimization and instance re-weighting [23, 41, 51].
These techniques enable better sample selection and weight
assignment. Some methods treat label correction as a meta-
process, where the model iteratively corrects noisy labels
[51, 61, 63], while others prevent overfitting by learning ro-
bust loss functions [23]. Recent techniques, such as CMW-
Net [42], adapt to data biases by generating adaptive sample
weights, and DMLP [46] combines self-supervised learning
with meta-learning for label correction. Unlike these ap-
proaches, our method integrates true and pseudo-label re-
weighting into meta-learning, optimizing per-sample loss
weights and implicitly relabeling data.



Figure 2. Overview of our model: First, sample selection splits the dataset into clean and noisy subsets. Sample importance is then
computed using DCD based on distance to class centroids, which guides loss weighting. Meta-learning generates adaptive weights to
refine labels. Finally, weighted features are fed into the classifier and projection head to compute loss and update the model.

3. Methodology
3.1. Preliminaries
Let the training set be Dtrain = {(xi, ŷi)}Ni=1, where xi is
the i-th input image, ŷi is the corresponding observed noisy
label. We aim to learn a robust model with this noisy train-
ing set, which can generalize well to unseen test examples.
Specifically, we can employ a deep neural network (DNN)
model f(x; θ) with parameters θ as a feature extractor and
use a cross-entropy loss to obtain a noisy robust classifica-
tion model:

L = − 1

Ncle

∑
(xi,ŷi)∈Dcle

ti log pi, (1)

where ti is the target, which can be either the observed
noisy label or a combination of noisy labels and pseudo-
labels. The term pi = softmax (f (xi; θ)) represents the
predicted probability for the i-th sample. To handle noisy
labels, existing methods try to construct a clean subset
Dcle ⊆ Dtrain, where samples are assumed to be correctly
labeled, and Ncle represents the size of this clean set. By
training the model with this clean set, the impact of noisy
labels can be significantly reduced.

To obtain the clean set, existing methods typically em-
ploy two strategies: (1) sample selection, which identifies
examples with low loss values as likely correctly labeled;
and (2) label correction, which adjusts the labels of exam-
ples exhibiting high predictive probabilities. Although these
strategies differ in approach, both are grounded in shared
indicators, such as low loss or high prediction confidence.
Consequently, they primarily concentrate on ”easy” exam-
ples, often neglecting more challenging cases [19]. There-
fore, this selective focus can hinder the model’s ability to

capture complex patterns, ultimately constraining its repre-
sentational capacity.

To address the above challenge, we propose DCD, a
novel and innovative approach to tackle sample selection
bias by focusing on key and representative samples de-
spite label noise. DCD differentiates between hard-to-
learn and noisy samples, prioritizing informative and cru-
cial instances. In the next section, we introduce Meta Dy-
namic Center Adjustment, which refines sample selection
and weight assignment to improve DCD’s robustness and
generalization.

3.2. Meta Dynamic Center Adjustment
In the presence of noisy labels, a major challenge is dis-
tinguishing noisy samples from genuinely informative hard
samples. Traditional methods [19, 27, 39] often fail by
treating all samples equally, neglecting the potential value
of hard samples. To address this, our approach dynamically
adjusts sample importance through Dynamic Center Dis-
tance (DCD) and meta-learning. DCD helps assess sample
difficulty based on the distance to class centers, guiding the
selection and weighting of samples. Meta-learning further
refines this process by learning adaptive sample weights,
ensuring better initialization. We elaborate on each of these
components in the following.
DCD Calculation. First, we calculate the DCD to evalu-
ate the difficulty of each sample. For a given sample xi, its
feature representation is denoted as h(xi). The DCD is de-
fined as the Euclidean distance between this feature and the
dynamic class center:

DCD(xi) = ∥h(xi)− ck∥, (2)

where ck represents the dynamic feature center of class k.



We can simply get ck by averaging the features in the k-
th class. However, since some examples may be wrongly
labeled, directly averaging them is not an optimal solution.

To ensure that the class centers remain consistent with
the true feature distribution, we propose a meta-learning
framework to adaptively learn weights for each example and
calculate a weighted mean as the class center. Moreover,
since the sample weights are updated periodically with the
changing of models, we denote the obtained centers as dy-
namic class centers. Assuming that the obtained weight for
xi is λi, then the dynamic class center for class k can be
obtain with:

ck =

∑
i∈Ck

λi · f(xi; θ)

|Ck|
, (3)

where Ck denotes the set of samples in class k and |Ck| is
the set size. The weight λi ensures critical samples have a
greater impact on the center update and is updated with the
following meta-learning framework.
Meta-Learning Driven Sample Weighting. Inspired by
[38], we define the target ti in Eq. (1) as a weighted combi-
nation of the noisy label and pseudo-label:

ti = αiŷi + βiỹi, (4)

where ỹi represents the pseudo-label derived from the
model’s current prediction, and αi and βi are the respec-
tive weights. In [38], the constraint αi+βi = 1 is imposed,
ensuring equal treatment for each sample. However, to ac-
count for the variability introduced by noisy labels, we relax
this constraint, allowing for individual weight assignments.

To achieve precise sample selection and weight cal-
culation, our method assigns adaptively initialized, meta-
learned weights to each training sample. In each training it-
eration, given the dataset, these optimal weights are refined
through meta-learning, representing the contributions of the
observed noisy label ŷ and pseudo-label ỹ. By employing
this meta-learning approach, the model dynamically adjusts
αi and βi for each sample. Thus, the primary learning ob-
jective is defined by substituting Eq. (4) into Eq. (1):

θ∗(α,β) = argmin
θ

N∑
i=1

αiH(pi, ŷi) + βiH(pi, ỹi), (5)

where H(·) is the cross-entropy loss, α and β are the weight
vectors with αi and βi be the i-th element. Specifically,
The weights αi, βi ≥ 0 are meta-learned based on perfor-
mance on a validation set, allowing the model to dynami-
cally adjust the relative contributions of the real label loss
and pseudo-label loss. Unlike traditional guided loss meth-
ods, the sum of αi and βi does not have to equal 1, providing
greater flexibility to maximize the model’s performance.

The optimal weights are obtained by minimizing
the validation loss on a clean validation set Dval =
{(xval

i , yval
i )}Mi=1:

α∗, β∗ = arg min
α,β≥0

1

M

M∑
i=1

H (softmax(f (xv
i ; θ

∗(α, β))), yv
i ) .

(6)
Through the above dual optimization in Eq. (5) and (6),

we can dynamically learn the model parameter θ and the
weights for noisy labels α and pseudo-labels β. Details on
the bi-level optimization are in Supplementary Materials.

Since αi and βi are weights for the noisy label and
pseudo-label for xi, the sum (αi + βi) can reflect the re-
liability of the sample xi. Therefore, we set the weight λi

in Eq. (3) for the sample xi as:

λi = αi + βi. (7)

Based on the obtained weight, we recalculate the distance
between the sample and the class center to obtain the Dy-
namic Center Distance:

DCDmeta(xi) = ∥h(xi)− ck∥. (8)

Finally, we classify examples with a large DCD as hard ex-
amples, as they lie farther from the representation center.
The importance weight for each example is then determined
by normalizing the exponential of the DCD:

Γi =
exp (DCDmeta(xi))∑N
j=1 exp (DCDmeta(xj))

. (9)

In Eq. (9), both the contributions of the meta-learned
weights and the distance between each sample and its class
center are taken into account. The DCD term modulates
the relative influence of the real label loss and pseudo-
label loss, while normalization based on DCD further re-
fines these weights according to each sample’s proximity to
its class center. Meanwhile, we explain why λi is not used
directly as the weight for xi in Sec. 4.7.

3.3. Loss Function
After completing the weight calculation, we first select a
clean subset with normal sample selection and label correc-
tion techniques [19]. Then, we employ a weighted cross-
entropy to focus more on the hard-clean examples:

LHF = −
N∑
i=1

Γi ·H (yi, h (f(xi; θf ); θh)) . (10)

To integrate both clean and noisy samples in a semi-
supervised learning (SSL) framework [4], we combine the
supervised loss with additional loss terms to handle label



noise and improve robustness. The overall training objec-
tive is then defined as:

LDCD = LHF + λuLu + λrLr + λCLC , (11)

where C is the contrastive loss. Lu and Lr handle unlabeled
data and regularization, respectively. The hyperparameters
λu, λr, and λC are set according to the experimental config-
uration in [19]. Details about the above SSL are provided
in the Supplementary Materials.

4. Experiments
4.1. Datasets
CIFAR-10/100 [21]: CIFAR-10/100 (50K train, 10K test)
use synthetic noise for robustness evaluation: symmetric
noise (random class reassignment) and asymmetric noise
(realistic mistakes, e.g., Truck→Auto; CIFAR-100 flips
within superclasses), due to natural data’s inherent noise.

Tiny-ImageNet [22]: This dataset is a smaller version
of the original ImageNet in terms of the number of classes
and the image resolution. There are in total 200 classes con-
taining 500 images per class. The image size is 64 × 64.

Clothing1M [54]: Clothing1M is a large-scale real-
world dataset with noisy labels. It contains 1M images from
14 different cloth-related classes. Since the labels are pro-
duced by the seller provided surrounding texts of the im-
ages, a large portion of confusing classes (e.g., Knitwear
and Sweater) are mislabeled.

Webvision [26]: This dataset contains 2.4 million im-
ages (obtained from Flickr and Google) that are categorized
into the same 1,000 classes as in the ImageNet ILSVRC12.
Following the previous studies [24], we use the first 50
classes of the Google image subset as the training data.

PROMISE12 [28]: The dataset consists of 50 training
cases of transversal T2-weighted MR images of the prostate
from multiple clinical centers and vendors, with varying ac-
quisition protocols, slice thickness, and endorectal coil us-
age. It includes both benign prostate conditions and prostate
cancer cases.

4.2. Training Details
We utilize the PreAct ResNet18 architecture for CIFAR-10
and CIFAR-100 datasets. For these tasks, we implement
the SGD optimizer with the following configuration: an ini-
tial learning rate (LR) of 0.02, a weight decay of 5e−4, a
momentum of 0.9, and a batch size of 64. Each network is
trained for approximately 350 epochs, with a linear learning
rate decay of 0.1 every 120 epochs. A warmup period of 30
epochs is applied prior to the main training phase. We set
λu, λr, and λC as 30, 1, and 0.025 for all datasets.

In the case of Tiny-ImageNet, we employ the ResNet50
architecture, starting with an initial LR of 0.01, a weight de-
cay of 1e−3, and a batch size of 32. The network is trained

for 350 epochs, with a learning rate decay of 0.1 every 100
epochs and a warmup period of 15 epochs. For the Cloth-
ing1M dataset, we adopt a similar approach, using an initial
LR of 0.002 and a weight decay of 1e−3, training the model
for 100 epochs with a lr-decay of 0.1 every 40 epochs. The
same settings are applied for the WebVision dataset to en-
sure consistency in performance.

Data augmentation is performed following the Auto-
augment policy, as specified in previous works. For CIFAR-
10 and CIFAR-100, we use the CIFAR-10-Policy, while the
ImageNet-Policy is applied to Tiny-ImageNet. Due to the
transferable nature of these policies, the ImageNet-Policy is
also utilized for both Clothing1M and WebVision datasets,
optimizing the model’s generalization capabilities across
different datasets.

4.3. Clean Meta Data Construction
The clean meta-dataset Dcle constitutes 2% of the entire
dataset in all experiments [64]. This ratio was determined
through preliminary experiments on CIFAR-10 under 90%
symmetric label noise, where 2% demonstrated optimal cost
efficiency in balancing test accuracy gains against compu-
tational overhead. We define the Cost Efficiency (CE) met-
ric as CE = ∆Accuracy/(∆Time ×∆Memory ×∆Meta),
where ∆ denotes relative change versus the 1% baseline.
As shown in Table 2, increasing beyond 2% yields dimin-
ishing returns in test accuracy while substantially increasing
resource demands.

For datasets such as CIFAR-10/100 and Tiny-ImageNet,
clean data were randomly sampled from the training set and
removed, while for Clothing1M and Webvision, clean data
were selected from the test set and removed accordingly.
The overall data split follows an 8:1:1 ratio for training, test-
ing, and validation.

4.4. Performance Comparisons

(a) Test Accuracy (%) (b) ROC AUC Score

Figure 3. Test accuracy (%) and ROC-AUC performance on
CIFAR-10 across varying noise levels. As the model becomes
more precise, the test-time performance improves accordingly.
The shaded region in the figure represents the error margin from
four experiments, while the solid line denotes the mean value.



Noise Mode Symmetric noise Asymmetric noise

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Method 20% 50% 80% 90% 20% 50% 80% 90% 10% 30% 40% 10% 30% 40%

Standard CE 86.8 79.4 62.9 42.7 62.0 46.7 19.9 10.1 88.8 81.7 76.1 68.1 53.3 44.5
DMix [24] 96.1 94.6 92.9 76.0 77.3 74.6 60.2 31.5 93.8 92.5 91.7 71.6 69.5 55.1
ELR [29] 95.8 94.8 93.3 78.7 77.6 73.6 60.8 33.4 95.4 94.7 93.0 77.3 74.6 73.2

UNION [19] 96.0 95.6 93.9 90.8 78.9 77.6 63.9 44.8 95.3 94.8 94.1 78.2 75.6 74.8
SFT [9] 92.6 88.5 42.1 10.5 71.9 65.5 27.0 7.9 - - - - - -

Sel-CL+ [8] 95.5 93.9 89.2 81.9 76.5 72.4 59.6 48.8 95.6 94.5 93.4 78.7 76.4 74.2
TCL [17] 94.9 93.8 92.3 89.2 77.8 73.1 64.7 47.9 95.3 94.9 92.5 78.3 75.5 75.3

OT-Filter [11] 96.0 95.3 94.0 90.5 76.7 73.8 61.8 42.8 - - - - - -
L2B [64] 96.7 95.6 94.8 94.4 80.1 78.1 69.6 60.7 95.1 94.7 94.0 78.5 75.4 75.1

DCD 96.8 96.2 95.3 95.1 83.1 80.7 73.3 65.3 96.1 95.8 95.6 80.1 78.6 78.4
±0.17 ±0.21 ±0.24 ±0.29 ±0.22 ±0.28 ±0.35 ±0.38 ±0.12 ±0.17 ±0.22 ±0.11 ±0.18 ±0.25

∆ ↑ 0.1 ↑ 0.6 ↑ 0.5 ↑ 0.7 ↑ 3.0 ↑ 2.6 ↑ 3.7 ↑ 4.6 ↑ 0.5 ↑ 0.9 ↑ 1.5 ↑ 1.4 ↑ 2.2 ↑ 3.1

Table 1. Test accuracies (%) achieved by various techniques under both symmetric and asymmetric noise conditions. The highest accuracy
values are highlighted in green, while the second-highest results are shaded in gray. This color scheme is consistently applied across all
tables in the following sections. Different baselines use varying datasets. We compare each dataset with the baseline that utilized it.

Meta Data Size Accuracy Time/Epoch Memory CE

1% 94.3% 0.7 min 5.3 GB -
2% 95.1% 0.9 min 6.9 GB 2.50
4% 95.5% 1.3 min 9.4 GB 0.20
6% 95.7% 2.1 min 11.2 GB 0.07

Table 2. Performance comparison with different meta-data size

Noise (%) 0 20 50

Alg. Best Avg. Best Avg. Best Avg.

Standard CE 57.4 56.7 35.8 35.6 19.8 19.6
F-correction [36] - - 44.5 44.4 33.1 32.8
MentorNet [18] - - 45.7 45.5 35.8 35.5

Co-teaching+ [59] 52.4 52.1 48.2 47.7 41.8 41.2
M-correction [1] 57.7 57.2 57.2 56.6 51.6 51.3

NCT [39] 62.4 61.5 58.0 57.2 47.8 47.4
UNION [19] 63.1 62.7 59.2 58.4 52.7 52.4
DISC [27] 68.5 68.2 67.9 67.5 64.3 63.9

DCD 70.3 69.9 70.2 69.6 68.4 67.7
∆ ↑ 1.8 ↑ 1.7 ↑ 2.3 ↑ 2.1 ↑ 4.1 ↑ 3.8

Table 3. Test accuracies (%) on Tiny-ImageNet dataset under sym-
metric noise settings.

CIFAR-10 and CIFAR-100 Datasets: The experimen-
tal results on CIFAR-10 and CIFAR-100 datasets, demon-
strating that DCD consistently achieves the highest test
accuracies across different noise levels under both sym-
metric and asymmetric label noise, as shown in Table 1.
For CIFAR-10, DCD outperforms other methods under
symmetric noise, reaching 95.1% accuracy at 90% noise
level, surpassing L2B [64] by 0.7%. In CIFAR-100, DCD
achieves 65.3% accuracy at 90% noise, significantly ex-
ceeding L2B [64]. Under asymmetric noise, DCD also ex-
cels, achieving 95.6% accuracy at 40% noise in CIFAR-10
and showing improvements of 1.5% to 3.1% in CIFAR-100

Method Backbone Test Accuracy

Standard CE ResNet-50 69.21
OT-Filter [11] ResNet-50 74.51

DMix [24] ResNet-50 74.76
ELR [29] ResNet-50 74.81
TCL [17] ResNet-50 74.85

UNION [19] ResNet-50 74.98
SFT [9] ResNet-50 75.08

SNSCL [50] ResNet-50 75.31
L2B [64] ResNet-50 77.50

DCD ResNet-50 78.34 ±0.17

∆ - ↑ 0.84

Table 4. Experimental results on Clothing1M dataset. Results for
previous techniques were copied from their respective papers.

Dataset WebVision ILSVRC12

Method Top-1 Top-5 Top-1 Top-5

D2L [31] 62.68 84.00 57.80 81.36
DivideMix [24] 77.32 91.64 75.20 90.84

ELR [29] 77.78 91.68 70.29 89.76
UNION [19] 77.60 93.44 75.29 93.72

TCL [17] 79.12 92.31 75.41 92.43
Sel-CL+ [8] 79.96 92.64 76.84 93.04
DISC [27] 80.28 92.28 77.44 92.28
LSL [20] 81.40 93.00 77.00 91.84

DCD 83.29±0.28 94.51±0.17 78.54±0.31 94.17±0.27

∆ ↑ 1.89 ↑ 1.07 ↑ 1.10 ↑ 0.45

Table 5. Experimental results on Webvision and ILSVRC12. All
methods are trained on the Webvision while evaluated on both We-
bvsion and ILSVRC12 validation set.

across various noise rates. These results highlight DCD’s
robustness in handling class-dependent noise. We also vi-
sualized DCD’s test accuracy (%) and ROC-AUC perfor-
mance under different noise levels on CIFAR-10, as shown
in Figure 3a and 3b, demonstrating DCD’s robustness and



Figure 4. Experimental results under different corrupted ratios Cr

of 20%, 40%, and 60% with precise (red outline), noise (yellow
outline), and correction (blue outline).

Method Dice (%)↑ ↑ HD (voxel)↓ ASD (voxel)↓

UNet++ [65] 73.74 11.63 3.70
NL re-weighting [32] 76.64 8.33 2.75

CRF [33] 78.00 7.45 2.57
L2B [64] 80.83 6.68 2.10

DCD 82.81 6.52 1.78
∆ ↑ 1.98 ↓ 0.16 ↓ 0.32

Table 6. Segmentation performance comparison under noisy-
supervision on PROMISE12.

superior performance. This strong performance arises from
its dynamic adaptation to noise, focusing on clean sam-
ples for learning and enhancing feature representation, ul-
timately improving model accuracy and robustness.

Tiny ImageNet Dataset: Table 3 compares the perfor-
mance of DCD with other state-of-the-art methods. Tiny-
ImageNet is challenging, and its difficulty increases with
label noise. Among baselines, UNION [19] uses a consis-
tent selection mechanism with contrastive learning, while
DISC [27] applies dynamic instance selection for noise ro-
bustness. However, both methods underperform compared
to DCD. As shown in Table 3, DCD achieves 1.8% to 4.1%
higher accuracy than DISC, depending on label noise levels.

Clothing1M Dataset: Table 4 provides a comparison
of performance on this real-world dataset with noisy la-
bels. Our method outperforms L2B [64] by 0.84%. For
Clothing1M, performance gains may fluctuate based on the
warm-up period’s length, as prolonged cross-entropy (CE)-
based training can lead to memorization effects. In our ap-
proach, we apply a warm-up period of 2,000 steps.

WebVision Dataset: Table 5 demonstrates DCD’s su-
perior performance, establishing new state-of-the-art Top-
1/Top-5 accuracy on Webvision and ILSVRC12. On
Webvision, DCD outperforms LSL [20] with 1.89% and
1.51% gains in Top-1/Top-5 accuracy; on ILSVRC12, it

(a) DCD vs Loss. (b) Visualize hard examples

Figure 5. Visualizing independence of DCD and hard examples.

Method Dice (%)↑
baseline - Cr1 82.01

DCD - Cr1 84.72
baseline - Cr2 80.83

DCD - Cr2 82.81
baseline - Cr3 77.70

DCD - Cr3 79.68

Table 7. L2B for segmentation under different noise levels.

achieves 1.10% and 0.45% improvements over prior base-
lines. These results confirm DCD’s enhanced robustness
against label noise compared to existing methods.

4.5. Generalization to Image Segmentation
We evaluated the performance of our method under noisy
supervision using the PROMISE12 dataset and compared it
with several state-of-the-art approaches, including UNet++
[65], NL re-weighting [32], Mix-up [60], and L2B [64]. As
summarized in Table 6, our approach outperforms all others
in key evaluation metrics such as Dice score, Hausdorff Dis-
tance (HD) [45], and Average Surface Distance (ASD) [15].
Specifically, our model achieved a Dice score of 82.81%,
with improvements in HD and ASD as well, demonstrating
its robustness under noisy conditions.

Furthermore, we evaluate the robustness of our method
under different noise levels by varying the corrupted ratios
of the training set to Cr1, Cr2, and Cr3, which represent
corruption rates of 20%, 40%, and 60%, respectively. As
shown in Table 7, we compared the baseline model [64],
which is trained directly on the noisy datasets, with our
DCD approach across these varying noise levels. The Dice
scores achieved by DCD were 84.72% for Cr1, 82.81% for
Cr2, and 79.68% for Cr3. In contrast, the baseline scores
dropped significantly from 82.01% to 77.70%. This indi-
cates that DCD maintains high performance and is robust
even as the noise levels increase, demonstrating significant
improvements, particularly under severe noise conditions.

4.6. Analyzing Independence of DCD
We validated DCD as an independent measure of sample
hardness through scatter plot analysis (Figure 5a), which
showed no direct correlation with classification loss be-



Dataset CIFAR10 CIFAR100

Noise Rate 50% 80% 90% 50% 80% 90%

Method Best Last Best Last Best Last Best Last Best Last Best Last

DCD w/o meta-pipeline 95.72 95.68 94.73 94.31 93.82 93.71 79.32 79.15 72.16 71.98 63.91 63.75
DCD w/o D 95.81 95.75 94.65 94.37 93.03 92.83 78.48 78.27 68.74 68.51 63.30 63.14
DCD w/o CL 95.51 95.49 94.93 94.82 94.23 94.11 79.82 79.53 72.28 72.17 64.73 64.57

DCD 96.28 96.17 95.31 95.25 95.14 95.07 80.74 80.69 73.35 73.24 65.32 65.19

Table 8. Ablation study with different training settings. Both the meta-pipeline and DCD components significantly affect the performance,
particularly under high noise rates. Removing contrastive loss (CL) also leads to noticeable performance degradation, especially as noise
levels increase. Test results at last epoch are also shown here.

Method 20% 50% 80%

baseline (OT-Filter) 76.7 73.8 61.8
α = 0 72.9 71.9 60.9
β = 0 78.3 75.8 64.8

α+ β = 1 81.6 78.6 72.2
α,β ≥ 0 83.1 80.7 73.3

Table 9. Ablation of α, β under diverse symmetric noise in
CIFAR-100. α,β ≥ 0 achieves best performance.

tween epochs 210-220. Our method uses DCD to priori-
tize high-DCD samples for better generalization and down-
weight low-DCD samples for increased robustness. Fig-
ure 5b illustrates this mechanism: simple samples (gray cir-
cles) are confidently classified far from decision boundaries,
while hard samples (colored circles) cluster near bound-
aries with ambiguous class membership and lower confi-
dence. This confirms DCD’s role in identifying boundary-
proximate hard samples, aligning with adversarial training
to enhance model robustness.

4.7. Compare with direct weight λi.
We conducted additional experiments exploring the direct
use of the meta-learning weights λi for sample selection.
Experimental results show that while the direct application
of these weights for sample selection yields improvements,
the enhancements are relatively marginal compared to the
original method. This is reflected in the reduced variance
of the results, as shown in Table 10, which demonstrates
that the original method provides more stable and consistent
outcomes under various noise levels.

4.8. Ablation Study
Effect of Meta Learning: Removing meta-learning from
DCD degrades performance across all noise levels (Table
8). At 90% noise, CIFAR-10 accuracy drops by 1.32%
(best) and 1.36% (last), while CIFAR-100 shows 1.41% and
1.44% reductions respectively.
Effect of DCD: The effect of removing the Dynamic Cen-
ter Distance (DCD) component is also prominent in Table
8. Without DCD, the model experiences a performance de-

Symmetric noise 20% 40% 60%

Direct weight (λi) 94.82±0.21 93.23±0.27 91.94±0.33
DCD (Γi) 96.78±0.17 96.38±0.18 95.61±0.23

Table 10. Compare Γi with direct weight λi in CIFAR-10.

cline at each noise level. In CIFAR-10, while the reduc-
tion in accuracy is subtle, especially at moderate noise rates
(50% and 80%), it becomes more pronounced at 90% noise,
with a decrease of about 2.11% in the best accuracy com-
pared to the full DCD configuration. For CIFAR-100, ex-
cluding DCD leads to a 2.02% decrease in the best accuracy
at 90% noise. These results suggest that DCD plays a crit-
ical role in maintaining model accuracy, particularly under
higher noise conditions, by enhancing feature learning and
robustness against noisy labels.
Significance of α and β: Table 9 shows that α = 0 causes
minor degradation, while β = 0 improves over baseline but
underperforms joint optimization. Constraining α + β = 1
yields moderate improvements but restricts flexibility. In-
dependent α/β optimization achieves optimal performance
through maximized balance and adaptability.

5. Conclusion
We propose DCD, an innovative method that incorporates
a meta-learning framework to address noisy labels and
sample difficulty. By dynamically prioritizing challeng-
ing samples based on distance from evolving class centers,
DCD improves training robustness. Extensive experiments
across multiple benchmark datasets, including synthetic and
real-world noise settings, and natural and medical images,
demonstrate the effectiveness of our method, promising so-
lution for robust learning in noisy environments.
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