做了一个今年AAAI25的checklist的tex代码分享,无偿分享,有问题b站接着私信我就可以。
使用方法:新建一个checklist.tex文件复制下面进去,然后在主文件参考文献后面加上就可以:
1 | \newpage |
checklist.tex:
1 | \section{Reproducibility Checklist} |
做了一个今年AAAI25的checklist的tex代码分享,无偿分享,有问题b站接着私信我就可以。
使用方法:新建一个checklist.tex文件复制下面进去,然后在主文件参考文献后面加上就可以:
1 | \newpage |
checklist.tex:
1 | \section{Reproducibility Checklist} |
我们要解决的问题是,在每个动作实例只有一个帧标签的情况下,如何定位动作的时间间隔,以进行训练。由于标签稀疏,现有工作无法学习动作的完整性,从而导致零碎的动作预测。在本文中,我们提出了一个新颖的框架,即生成密集的伪标签,为模型提供完整性指导。具体来说,我们首先选择伪背景点来补充点级动作标签。然后,通过将点作为种子,我们搜索可能包含完整动作实例的最佳序列,同时与种子达成一致。为了从获得的序列中学习完整性,我们引入了两种新的损失,分别从动作得分和特征相似性方面对动作实例和背景实例进行对比。实验结果表明,我们的完整性指导确实有助于模型定位完整的动作实例,从而大幅提高了性能,尤其是在高 IoU 阈值下。此外,我们还在四个基准测试中证明了我们的方法优于现有的先进方法: THUMOS’14、GTEA、BEOID 和 ActivityNet。值得注意的是,我们的方法甚至可以与最新的全监督方法相媲美,而注释成本却低 6 倍。
弱监督时态动作定位的目的是在训练过程中仅使用视频级类别标签来定位和识别未剪辑视频中的动作。在没有实例级注释的情况下,大多数现有方法都遵循基于片段的多实例学习(S-MIL)框架,即通过视频标签对片段预测进行监督。然而,在训练过程中获取分段级分数的目标与在测试过程中获取建议级分数的目标并不一致,从而导致了次优结果。为了解决这个问题,我们提出了一种新颖的基于提案的多实例学习(Proposal-based Multiple Instance Learning,P-MIL)框架,在训练和测试阶段直接对候选提案进行分类,其中包括三个关键设计:
在两个具有挑战性的基准(包括 THUMOS14 和 ActivityNet)上取得的大量实验结果证明了我们的方法具有卓越的性能。